Sains Malaysiana 53(10)(2024): 3479-3485
http://doi.org/10.17576/jsm-2024-5310-20
Study
of Natural Herbal Dyes Photodegradation Effect to Optical Properties for
Dye-Sensitized Solar Cells
(Kajian
Kesan Fotodegradasi Pewarna Herba Semula Jadi kepada Sifat Optik untuk Sel Suria Peka Pewarna)
ARIPIN TRIYANTO1,2,
NORA’AINI ALI2,*, HASIAH SALLEH2,
JAN SETIAWAN1,3, NORHAFIZA I. YATIM4, NURUL ALFATIHAH
MOHD ARIFIN2 & NUR SALIHAH ALIAS2
1Electrical Engineering Department, Faculty of
Engineering, Pamulang University, South Tangerang,
Banten, Indonesia
2Faculty of Ocean Engineering Technology and
Informatics, Universiti Malaysia Terengganu, 21030
Kuala Nerus, Terengganu, Malaysia
3Reseach Center for Advance Material, National
Research and Innovation Agency, STP B.J. Habibie, South Tangerang, Banten,
Indonesia
4Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
Received: 29 December 2023/Accepted: 7 August
2024
Abstract
The stability of natural dyes for use in
dye-sensitive solar cells is known from their photodegradation characteristics.
Photodegradation effects using artificial light radiation on natural herbal
dyes were investigated. Three natural
herbal dyes, namely Fagraea acuminatissima, sappanwood,
and kulit setong were used
in this study. The stability of the
natural herbal dyes under artificial light radiation was studied. The optical
properties of the natural herbal dyes as indicators of their stability were characterized
using FTIR and UV-VIS absorption. Stability testing of natural herbal dyes was
conducted in a room with artificial lighting for 5 weeks. Observations of
changes in their optical properties were performed weekly. It
can be seen that all three natural herbal dyes contained anthocyanin. In
addition to anthocyanin, Fagraea acuminatissima and sappanwood also contain chlorophyll. In contrast, the kulit setong contains beta-carotene in addition to anthocyanin.
The degradation percentage showed that sappanwood degrade to all of its pigments. While an increase
occurred in the chlorophyll peak of Fagraea acuminatissima and the beta-carotene peak of kulit setong. This clearly shows
that Fagraea acuminatissima has the highest stability, and potentially increases the efficiency of solar
cells.
Keywords:
Dye-sensitized solar cell; herb; natural dyes; optical properties
Abstrak
Kestabilan pewarna semula jadi untuk digunakan dalam sel suria sensitif pewarna diketahui daripada ciri fotodegradasinya.
Kesan fotodegradasi menggunakan sinaran cahaya buatan pada pewarna herba semulajadi telah dikaji. Tiga pewarna herba semula jadi iaitu Fagraea acuminatissima, sappanwood dan kulit setong digunakan dalam kajian ini. Kestabilan pewarna herba semulajadi di bawah sinaran cahaya buatan telah dikaji. Sifat optik pewarna herba semula jadi sebagai penunjuk kestabilan mereka dicirikan menggunakan penyerapan FTIR dan UV-VIS. Ujian kestabilan pewarna herba asli telah dijalankan di dalam bilik dengan pencahayaan buatan selama 5 minggu. Pemerhatian terhadap perubahan sifat optiknya dilakukan setiap minggu. Dapat dilihat bahawa ketiga-tiga pewarna herba semula jadi mengandungi antosianin. Selain antosianin, Fagraea acuminatissima dan sappanwood juga mengandungi klorofil. Sebaliknya, kulit setong mengandungi beta-karotena sebagai tambahan kepada antosianin. Peratusan degradasi menunjukkan bahawa kayu sappan merosot kepada semua pigmennya. Manakala peningkatan berlaku pada puncak klorofil Fagraea acuminatissima dan puncak beta-karotena kulit setong. Ini jelas menunjukkan bahawa Fagraea acuminatissima mempunyai kestabilan tertinggi dan berpotensi meningkatkan kecekapan sel suria.
Kata kunci: Herba; pewarna semula jadi; sel suria peka pewarna; sifat optic
REFERENCES
Agati, G. 1998. Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and
laser excitation wavelength. Pure and Applied Optics (Print edition) (United
Kingdom) 7(4): 797-807.
Ahliha, A.H., Nurosyid, F.,
Supriyanto, A. & Kusumaningsih, T. 2018. Optical
properties of anthocyanin dyes on TiO2 as photosensitizers for
application of dye-sensitized solar cell (DSSC). IOP Conference Series:
Materials Science and Engineering 333: 012018.
Amelia, P. & Gunlazuardi, J. 2023. Development of BiOBr/TiO2 nanotubes electrode for conversion of nitrogen to ammonia in a tandem
photoelectrochemical cell under visible light. International Journal of
Renewable Energy Development 12(4): 702-710.
Ansir, R., Ullah, N., Ünlü, B., Mujtaba Shah, S. & Özacar, M. 2021. Effect of annealing temperatures on
performance of DSSCs fabricated using Ag or Pd@C@ZnO composites as photoanode materials. Solar Energy 224: 617-628.
Arifin, N.A.M., Salleh, H., Dagang, A.N., Ali, N.A.N., Alias, N.S. & Kamarulzaman,
N.H. 2021. Photodegradation effect on optical properties of mangosteen
pericarp, black grape peel and violet Bougainvillea flowers as photosensitizer for solar cell application. Jurnal Teknologi 83(5): 109-117.
Boo, H.O., Hwang, S.J., Bae,
C.S., Park, S.H., Heo, B.G. & Gorinstein, S.
2012. Extraction and characterization of some natural plant pigments. Industrial
Crops and Products 40(1): 129-135.
Dhafina, W.A., Daud, M.Z. & Salleh, H. 2020. The
sensitization effect of anthocyanin and chlorophyll dyes on optical and
photovoltaic properties of zinc oxide based dye-sensitized solar cells. Optik 207: 163808.
Diner, F. 2011. The analysis on photovoltaic electricity generation status,
potential and policies of the leading countries in solar energy. Renewable
and Sustainable Energy Reviews 15(1): 713-720.
Durgawati Vishwavidyalya,
R. & Kumar Jawre, A. 2018. Bio-photovoltaic: The
future of electricity with natural resources. International Journal of
Creative Research Thoughts 6(1): 2320-2882.
Falguera, V., Pagán, J. & Ibarz,
A. 2011. Effect of UV irradiation on enzymatic activities and physicochemical
properties of apple juices from different varieties. Lwt 44(1): 115-119.
Gautam, A., Kshirsagar, A.,
Biswas, R., Banerjee, S. & Khanna, P.K. 2016. Photodegradation of organic
dyes based on anatase and rutile TiO2 nanoparticles. RSC Advances 6(4): 2746-2759.
Ge, X., Timrov,
I., Binnie, S., Biancardi, A., Calzolari, A. &
Baroni, S. 2015. Accurate and inexpensive prediction of the color optical
properties of anthocyanins in solution. Journal of Physical Chemistry A 119(16): 3816-3822.
Ghann, W., Kang, H., Sheikh, T., Yadav, S., Chavez-Gil, T.,
Nesbitt, F. & Uddin, J. 2017. Fabrication, optimization and
characterization of natural dye sensitized solar cell. Scientific Reports 7: 41470.
Gitelson, A.A., Merzlyak, M.N. & Lichtenthaler,
H.K. 1996. Detection of red edge position and chlorophyll content by
reflectance measurements near 700 nm. Journal of Plant Physiology 148(3-4): 501-508.
Gómez-Ortíz, N.M.,
Vázquez-Maldonado, I.A., Pérez-Espadas, A.R., Mena-Rejón,
G.J., Azamar-Barrios, J.A. & Oskam, G. 2010. Dye-sensitized solar cells
with natural dyes extracted from achiote seeds. Solar Energy Materials and
Solar Cells 94(1): 40-44.
Gracheva, E. & Alimova, A.
2019. Calculation methods and comparative analysis of losses of active and
electric energy in low voltage devices. 2019 International Ural Conference
on Electrical Power Engineering (UralCon),
Chelyabinsk, Russia. pp. 361-367. doi:
10.1109/URALCON.2019.8877627
Institute of Electrical and
Electronics Engineers. 2013. 2013 IEEE Energytech:
Cleveland, Ohio, 21-23 July. pp. 9-12.
Ishak, N., Salleh, H., Dagang, A.N., Salisa, A.R., Kamarulzaman, N.H., Ghazali,
S.M., Majid, N.A. & Ahmad, Z. 2019. Hybrid solar cell
using conjugated chlorophyll from Pandanus amaryllifolius as photosensitizers. International Journal of Recent Technology and
Engineering (IJRTE) 8(4): 10142-10147.
Kaswan, O.P., Sonel, A. & Yadav, S.K. 2022. Conversion
of solar radiation into electrical energy by using solar cell. Central Asian Journal of Theoretical and Applied Science 3(7): 104-107.
Khomsah, A., Sudjito, Wijono & Laksono, A.S. 2019.
Pico-hydro as a renewable energy: Local natural resources and equipment
availability in efforts to generate electricity. IOP Conference Series:
Materials Science and Engineering 462: 012047.
Kim, J.H., Moon, K.J., Kim,
J.M., Lee, D. & Kim, S.H. 2015. Effects of various light-intensity and
temperature environments on the photovoltaic performance of dye-sensitized
solar cells. Solar Energy 113: 251-257.
Lavakusa, B., Rama Devi, D., Belachew, N. & Basavaiah, K.
2020. Selective synthesis of visible light active γ-bismuth molybdate
nanoparticles for efficient photocatalytic degradation of methylene blue,
reduction of 4-nitrophenol, and antimicrobial activity. RSC Advances 10(60): 36636-36643.
Mancinelli, A.L. 1990.
Interaction between light quality and light quantity in the photoregulation of anthocyanin production. Plant Physiology 92(4): 1191-1195.
Matus, J.T., Loyola, R., Vega,
A., Peña-Neira, A., Bordeu, E., Arce-Johnson, P.
& Alcalde, J.A. 2009. Post-veraison sunlight
exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. Journal of Experimental Botany 60(3): 853-867.
Mehmood, U., Al-Ahmed, A.,
Al-Sulaiman, F.A., Malik, M.I., Shehzad, F. & Khan, A.U.H. 2017. Effect of
temperature on the photovoltaic performance and stability of solid-state
dye-sensitized solar cells: A review. Renewable and Sustainable Energy
Reviews 79: 946-959.
Nurul Huda Kamarulzaman, Hasiah
Salleh, Ahmad Nazri Dagang, Mohd Sabri Mohd Ghazali,
Nurhayati Ishak & Wan Farahiyah Wan Kamarudin.
2023. Natural dye’s photodegradation effect towards optical properties for
solar energy applications. Jurnal Teknologi 85(1): 167-176.
Pearson, G.L. 1957. Conversion
of solar to electrical energy. American Journal of Physics 25(9):
591-598.
Pramananda, V., Hadyan Fityay, T.A. & Misran, E. 2021. Anthocyanin as natural
dye in DSSC fabrication: A review. IOP Conference Series: Materials Science
and Engineering 1122: 012104.
Ruhane, T.A., Islam, M.T., Rahaman, M.S., Bhuiyan, M.M.H.,
Islam, J.M.M., Newaz, M.K., Khan, K.A. & Khan, M.A. 2017. Photo current
enhancement of natural dye sensitized solar cell by optimizing dye extraction
and its loading period. Optik 149: 174-183.
Shakeel Ahmad, M., Pandey, A.K.
& Abd Rahim, N. 2017. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye
sensitized solar cell (DSSC) applications. A review. Renewable and
Sustainable Energy Reviews 77: 89-108.
Shibl, H.M., Hafez, H.S., Rifai, R.I. & Abdel Mottaleb, M.S.A. 2013. Environmental friendly, low cost quasi solid state dye sensitized solar cell: Polymer
electrolyte introduction. Journal of Inorganic and Organometallic Polymers
and Materials 23(4): 944-949.
Singh, L.K. & Koiry, B.P. 2018. Natural dyes and their effect on
efficiency of TiO2 based DSSCs: A comparative study. Materials
Today: Proceedings 5(1): 2112-2122.
Singh, M., Bajaj, N.K.,
Bhardwaj, A., Singh, P., Kumar, P. & Sharma, J. 2018. Study of
photocatalytic and antibacterial activities of graphene oxide nanosheets. Advanced
Composites and Hybrid Materials 1(4): 759-765.
Stone, J.L. 1993.
Photovoltaics: Unlimited electrical energy from the sun. Physics Today 46(9): 22-29.
Supriyanto, A., Nurosyid, F. & Ahliha, A.H.
2018. Carotenoid pigment as sensitizers for applications of dye-sensitized
solar cell (DSSC). IOP Conference Series: Materials Science and Engineering 432: 012060.
Syafinar, R., Gomesh, N., Irwanto,
M., Fareq, M. & Irwan, Y.M. 2015. Chlorophyll
pigments as nature based dye for dye-sensitized solar cell (DSSC). Energy Procedia 79: 896-902.
Tahir, D., Satriani, W., Gareso, P.L. & Abdullah, B. 2018. Dye sensitized solar
cell (DSSC) with natural dyes extracted from Jatropha leaves and purple Chrysanthemum flowers as sensitizer. Journal of Physics: Conference Series 979:
012056.
Tan, B. & Soderstrom, D.N.
1989. Qualitative aspects of UV-vis spectrophotometry of β-carotene and
lycopene. Journal of Chemical Education 66(3): 258-260.
Taya, S.A., El-Agez, T.M., Elrefi, K.S. &
Abdel-Latif, M.S. 2015. Dye-sensitized solar cells based on dyes extracted from dried plant leaves. Turkish Journal of Physics 39(1): 24-30.
Toshpulatov, N., Tursunov, O., Kodirov,
D., Maksumkhanova, A. & Yusupov, Z. 2020. Study
on issues of uninterrupted power supply, energy-saving and improving the
quality of electrical energy of water facilities. IOP Conference Series:
Earth and Environmental Science 614: 012025.
Wei, D. 2010. Dye sensitized
solar cells. International Journal of Molecular Sciences 11(3):
1103-1113.
Yusupandi, F., Devianto, H., Widiatmoko, P., Nurdin, I., Yoon, S.P., Lim, T.H. &
Arif, A.F. 2022. Performance evaluation of an electrolyte-supported
intermediate-temperature solid oxide fuel cell (IT-SOFC) with low-cost
materials. International Journal of Renewable Energy Development 11(4):
1037-1042.
Zyoud, A., Zaatar, N., Saadeddin,
I., Helal, M.H., Campet, G., Hakim, M., Park, D.
& Hilal, H.S. 2011. Alternative natural dyes in water purification:
Anthocyanin as TiO2-sensitizer in methyl orange photo-degradation. Solid
State Sciences 13(6): 1268-1275.
*Corresponding author; email:
noraaini@umt.edu.my